Copied to
clipboard

G = C5×C23⋊Q8order 320 = 26·5

Direct product of C5 and C23⋊Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23⋊Q8, C231(C5×Q8), (C22×C10)⋊1Q8, (C2×C20).307D4, C24.5(C2×C10), (C22×Q8)⋊1C10, C10.91C22≀C2, C22.69(D4×C10), C22.20(Q8×C10), C10.87(C22⋊Q8), (C23×C10).5C22, C2.C4210C10, C10.67(C4.4D4), C23.76(C22×C10), (C22×C20).401C22, (C22×C10).457C23, (Q8×C2×C10)⋊13C2, (C2×C4).14(C5×D4), C2.6(C5×C22⋊Q8), C2.5(C5×C22≀C2), C2.5(C5×C4.4D4), (C2×C10).609(C2×D4), (C2×C22⋊C4).8C10, (C22×C4).5(C2×C10), (C2×C10).108(C2×Q8), C22.36(C5×C4○D4), (C10×C22⋊C4).27C2, (C2×C10).217(C4○D4), (C5×C2.C42)⋊26C2, SmallGroup(320,894)

Series: Derived Chief Lower central Upper central

C1C23 — C5×C23⋊Q8
C1C2C22C23C22×C10C22×C20Q8×C2×C10 — C5×C23⋊Q8
C1C23 — C5×C23⋊Q8
C1C22×C10 — C5×C23⋊Q8

Generators and relations for C5×C23⋊Q8
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 362 in 202 conjugacy classes, 78 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C2×Q8, C24, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C22×Q8, C2×C20, C2×C20, C5×Q8, C22×C10, C22×C10, C22×C10, C23⋊Q8, C5×C22⋊C4, C22×C20, Q8×C10, C23×C10, C5×C2.C42, C10×C22⋊C4, Q8×C2×C10, C5×C23⋊Q8
Quotients: C1, C2, C22, C5, D4, Q8, C23, C10, C2×D4, C2×Q8, C4○D4, C2×C10, C22≀C2, C22⋊Q8, C4.4D4, C5×D4, C5×Q8, C22×C10, C23⋊Q8, D4×C10, Q8×C10, C5×C4○D4, C5×C22≀C2, C5×C22⋊Q8, C5×C4.4D4, C5×C23⋊Q8

Smallest permutation representation of C5×C23⋊Q8
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 45)(2 41)(3 42)(4 43)(5 44)(6 31)(7 32)(8 33)(9 34)(10 35)(11 53)(12 54)(13 55)(14 51)(15 52)(16 25)(17 21)(18 22)(19 23)(20 24)(26 69)(27 70)(28 66)(29 67)(30 68)(36 46)(37 47)(38 48)(39 49)(40 50)(56 65)(57 61)(58 62)(59 63)(60 64)(71 80)(72 76)(73 77)(74 78)(75 79)(81 94)(82 95)(83 91)(84 92)(85 93)(86 110)(87 106)(88 107)(89 108)(90 109)(96 146)(97 147)(98 148)(99 149)(100 150)(101 128)(102 129)(103 130)(104 126)(105 127)(111 124)(112 125)(113 121)(114 122)(115 123)(116 133)(117 134)(118 135)(119 131)(120 132)(136 157)(137 158)(138 159)(139 160)(140 156)(141 154)(142 155)(143 151)(144 152)(145 153)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 23)(7 24)(8 25)(9 21)(10 22)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 34)(18 35)(19 31)(20 32)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 73)(57 74)(58 75)(59 71)(60 72)(61 78)(62 79)(63 80)(64 76)(65 77)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 113)(97 114)(98 115)(99 111)(100 112)(101 118)(102 119)(103 120)(104 116)(105 117)(121 146)(122 147)(123 148)(124 149)(125 150)(126 133)(127 134)(128 135)(129 131)(130 132)(136 153)(137 154)(138 155)(139 151)(140 152)(141 158)(142 159)(143 160)(144 156)(145 157)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 144)(7 145)(8 141)(9 142)(10 143)(16 137)(17 138)(18 139)(19 140)(20 136)(21 159)(22 160)(23 156)(24 157)(25 158)(26 50)(27 46)(28 47)(29 48)(30 49)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 55)(42 51)(43 52)(44 53)(45 54)(56 94)(57 95)(58 91)(59 92)(60 93)(61 82)(62 83)(63 84)(64 85)(65 81)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 134)(97 135)(98 131)(99 132)(100 133)(101 122)(102 123)(103 124)(104 125)(105 121)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 56 45 81)(2 57 41 82)(3 58 42 83)(4 59 43 84)(5 60 44 85)(6 100 140 125)(7 96 136 121)(8 97 137 122)(9 98 138 123)(10 99 139 124)(11 93 53 64)(12 94 54 65)(13 95 55 61)(14 91 51 62)(15 92 52 63)(16 101 141 135)(17 102 142 131)(18 103 143 132)(19 104 144 133)(20 105 145 134)(21 115 155 148)(22 111 151 149)(23 112 152 150)(24 113 153 146)(25 114 154 147)(26 109 69 71)(27 110 70 72)(28 106 66 73)(29 107 67 74)(30 108 68 75)(31 116 156 126)(32 117 157 127)(33 118 158 128)(34 119 159 129)(35 120 160 130)(36 86 46 76)(37 87 47 77)(38 88 48 78)(39 89 49 79)(40 90 50 80)
(1 96 45 121)(2 97 41 122)(3 98 42 123)(4 99 43 124)(5 100 44 125)(6 85 140 60)(7 81 136 56)(8 82 137 57)(9 83 138 58)(10 84 139 59)(11 133 53 104)(12 134 54 105)(13 135 55 101)(14 131 51 102)(15 132 52 103)(16 95 141 61)(17 91 142 62)(18 92 143 63)(19 93 144 64)(20 94 145 65)(21 108 155 75)(22 109 151 71)(23 110 152 72)(24 106 153 73)(25 107 154 74)(26 149 69 111)(27 150 70 112)(28 146 66 113)(29 147 67 114)(30 148 68 115)(31 86 156 76)(32 87 157 77)(33 88 158 78)(34 89 159 79)(35 90 160 80)(36 126 46 116)(37 127 47 117)(38 128 48 118)(39 129 49 119)(40 130 50 120)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,45)(2,41)(3,42)(4,43)(5,44)(6,31)(7,32)(8,33)(9,34)(10,35)(11,53)(12,54)(13,55)(14,51)(15,52)(16,25)(17,21)(18,22)(19,23)(20,24)(26,69)(27,70)(28,66)(29,67)(30,68)(36,46)(37,47)(38,48)(39,49)(40,50)(56,65)(57,61)(58,62)(59,63)(60,64)(71,80)(72,76)(73,77)(74,78)(75,79)(81,94)(82,95)(83,91)(84,92)(85,93)(86,110)(87,106)(88,107)(89,108)(90,109)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,96,45,121)(2,97,41,122)(3,98,42,123)(4,99,43,124)(5,100,44,125)(6,85,140,60)(7,81,136,56)(8,82,137,57)(9,83,138,58)(10,84,139,59)(11,133,53,104)(12,134,54,105)(13,135,55,101)(14,131,51,102)(15,132,52,103)(16,95,141,61)(17,91,142,62)(18,92,143,63)(19,93,144,64)(20,94,145,65)(21,108,155,75)(22,109,151,71)(23,110,152,72)(24,106,153,73)(25,107,154,74)(26,149,69,111)(27,150,70,112)(28,146,66,113)(29,147,67,114)(30,148,68,115)(31,86,156,76)(32,87,157,77)(33,88,158,78)(34,89,159,79)(35,90,160,80)(36,126,46,116)(37,127,47,117)(38,128,48,118)(39,129,49,119)(40,130,50,120)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,45)(2,41)(3,42)(4,43)(5,44)(6,31)(7,32)(8,33)(9,34)(10,35)(11,53)(12,54)(13,55)(14,51)(15,52)(16,25)(17,21)(18,22)(19,23)(20,24)(26,69)(27,70)(28,66)(29,67)(30,68)(36,46)(37,47)(38,48)(39,49)(40,50)(56,65)(57,61)(58,62)(59,63)(60,64)(71,80)(72,76)(73,77)(74,78)(75,79)(81,94)(82,95)(83,91)(84,92)(85,93)(86,110)(87,106)(88,107)(89,108)(90,109)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,96,45,121)(2,97,41,122)(3,98,42,123)(4,99,43,124)(5,100,44,125)(6,85,140,60)(7,81,136,56)(8,82,137,57)(9,83,138,58)(10,84,139,59)(11,133,53,104)(12,134,54,105)(13,135,55,101)(14,131,51,102)(15,132,52,103)(16,95,141,61)(17,91,142,62)(18,92,143,63)(19,93,144,64)(20,94,145,65)(21,108,155,75)(22,109,151,71)(23,110,152,72)(24,106,153,73)(25,107,154,74)(26,149,69,111)(27,150,70,112)(28,146,66,113)(29,147,67,114)(30,148,68,115)(31,86,156,76)(32,87,157,77)(33,88,158,78)(34,89,159,79)(35,90,160,80)(36,126,46,116)(37,127,47,117)(38,128,48,118)(39,129,49,119)(40,130,50,120) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,45),(2,41),(3,42),(4,43),(5,44),(6,31),(7,32),(8,33),(9,34),(10,35),(11,53),(12,54),(13,55),(14,51),(15,52),(16,25),(17,21),(18,22),(19,23),(20,24),(26,69),(27,70),(28,66),(29,67),(30,68),(36,46),(37,47),(38,48),(39,49),(40,50),(56,65),(57,61),(58,62),(59,63),(60,64),(71,80),(72,76),(73,77),(74,78),(75,79),(81,94),(82,95),(83,91),(84,92),(85,93),(86,110),(87,106),(88,107),(89,108),(90,109),(96,146),(97,147),(98,148),(99,149),(100,150),(101,128),(102,129),(103,130),(104,126),(105,127),(111,124),(112,125),(113,121),(114,122),(115,123),(116,133),(117,134),(118,135),(119,131),(120,132),(136,157),(137,158),(138,159),(139,160),(140,156),(141,154),(142,155),(143,151),(144,152),(145,153)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,23),(7,24),(8,25),(9,21),(10,22),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,34),(18,35),(19,31),(20,32),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,73),(57,74),(58,75),(59,71),(60,72),(61,78),(62,79),(63,80),(64,76),(65,77),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,113),(97,114),(98,115),(99,111),(100,112),(101,118),(102,119),(103,120),(104,116),(105,117),(121,146),(122,147),(123,148),(124,149),(125,150),(126,133),(127,134),(128,135),(129,131),(130,132),(136,153),(137,154),(138,155),(139,151),(140,152),(141,158),(142,159),(143,160),(144,156),(145,157)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,144),(7,145),(8,141),(9,142),(10,143),(16,137),(17,138),(18,139),(19,140),(20,136),(21,159),(22,160),(23,156),(24,157),(25,158),(26,50),(27,46),(28,47),(29,48),(30,49),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,55),(42,51),(43,52),(44,53),(45,54),(56,94),(57,95),(58,91),(59,92),(60,93),(61,82),(62,83),(63,84),(64,85),(65,81),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,134),(97,135),(98,131),(99,132),(100,133),(101,122),(102,123),(103,124),(104,125),(105,121),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,56,45,81),(2,57,41,82),(3,58,42,83),(4,59,43,84),(5,60,44,85),(6,100,140,125),(7,96,136,121),(8,97,137,122),(9,98,138,123),(10,99,139,124),(11,93,53,64),(12,94,54,65),(13,95,55,61),(14,91,51,62),(15,92,52,63),(16,101,141,135),(17,102,142,131),(18,103,143,132),(19,104,144,133),(20,105,145,134),(21,115,155,148),(22,111,151,149),(23,112,152,150),(24,113,153,146),(25,114,154,147),(26,109,69,71),(27,110,70,72),(28,106,66,73),(29,107,67,74),(30,108,68,75),(31,116,156,126),(32,117,157,127),(33,118,158,128),(34,119,159,129),(35,120,160,130),(36,86,46,76),(37,87,47,77),(38,88,48,78),(39,89,49,79),(40,90,50,80)], [(1,96,45,121),(2,97,41,122),(3,98,42,123),(4,99,43,124),(5,100,44,125),(6,85,140,60),(7,81,136,56),(8,82,137,57),(9,83,138,58),(10,84,139,59),(11,133,53,104),(12,134,54,105),(13,135,55,101),(14,131,51,102),(15,132,52,103),(16,95,141,61),(17,91,142,62),(18,92,143,63),(19,93,144,64),(20,94,145,65),(21,108,155,75),(22,109,151,71),(23,110,152,72),(24,106,153,73),(25,107,154,74),(26,149,69,111),(27,150,70,112),(28,146,66,113),(29,147,67,114),(30,148,68,115),(31,86,156,76),(32,87,157,77),(33,88,158,78),(34,89,159,79),(35,90,160,80),(36,126,46,116),(37,127,47,117),(38,128,48,118),(39,129,49,119),(40,130,50,120)]])

110 conjugacy classes

class 1 2A···2G2H2I4A···4L5A5B5C5D10A···10AB10AC···10AJ20A···20AV
order12···2224···4555510···1010···1020···20
size11···1444···411111···14···44···4

110 irreducible representations

dim11111111222222
type+++++-
imageC1C2C2C2C5C10C10C10D4Q8C4○D4C5×D4C5×Q8C5×C4○D4
kernelC5×C23⋊Q8C5×C2.C42C10×C22⋊C4Q8×C2×C10C23⋊Q8C2.C42C2×C22⋊C4C22×Q8C2×C20C22×C10C2×C10C2×C4C23C22
# reps133141212462624824

Matrix representation of C5×C23⋊Q8 in GL6(𝔽41)

1000000
0100000
0010000
0001000
0000160
0000016
,
40320000
010000
001000
0094000
000010
00002840
,
4000000
0400000
001000
000100
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
3200000
290000
0093900
00403200
0000400
0000040
,
190000
18400000
0040000
0004000
0000271
00001014

G:=sub<GL(6,GF(41))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[40,0,0,0,0,0,32,1,0,0,0,0,0,0,1,9,0,0,0,0,0,40,0,0,0,0,0,0,1,28,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,2,0,0,0,0,0,9,0,0,0,0,0,0,9,40,0,0,0,0,39,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,18,0,0,0,0,9,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,27,10,0,0,0,0,1,14] >;

C5×C23⋊Q8 in GAP, Magma, Sage, TeX

C_5\times C_2^3\rtimes Q_8
% in TeX

G:=Group("C5xC2^3:Q8");
// GroupNames label

G:=SmallGroup(320,894);
// by ID

G=gap.SmallGroup(320,894);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,280,589,288,1766,1731]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽