direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×C23⋊Q8, C23⋊1(C5×Q8), (C22×C10)⋊1Q8, (C2×C20).307D4, C24.5(C2×C10), (C22×Q8)⋊1C10, C10.91C22≀C2, C22.69(D4×C10), C22.20(Q8×C10), C10.87(C22⋊Q8), (C23×C10).5C22, C2.C42⋊10C10, C10.67(C4.4D4), C23.76(C22×C10), (C22×C20).401C22, (C22×C10).457C23, (Q8×C2×C10)⋊13C2, (C2×C4).14(C5×D4), C2.6(C5×C22⋊Q8), C2.5(C5×C22≀C2), C2.5(C5×C4.4D4), (C2×C10).609(C2×D4), (C2×C22⋊C4).8C10, (C22×C4).5(C2×C10), (C2×C10).108(C2×Q8), C22.36(C5×C4○D4), (C10×C22⋊C4).27C2, (C2×C10).217(C4○D4), (C5×C2.C42)⋊26C2, SmallGroup(320,894)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C23⋊Q8
G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 362 in 202 conjugacy classes, 78 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, Q8, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C2×Q8, C24, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C22×Q8, C2×C20, C2×C20, C5×Q8, C22×C10, C22×C10, C22×C10, C23⋊Q8, C5×C22⋊C4, C22×C20, Q8×C10, C23×C10, C5×C2.C42, C10×C22⋊C4, Q8×C2×C10, C5×C23⋊Q8
Quotients: C1, C2, C22, C5, D4, Q8, C23, C10, C2×D4, C2×Q8, C4○D4, C2×C10, C22≀C2, C22⋊Q8, C4.4D4, C5×D4, C5×Q8, C22×C10, C23⋊Q8, D4×C10, Q8×C10, C5×C4○D4, C5×C22≀C2, C5×C22⋊Q8, C5×C4.4D4, C5×C23⋊Q8
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 45)(2 41)(3 42)(4 43)(5 44)(6 31)(7 32)(8 33)(9 34)(10 35)(11 53)(12 54)(13 55)(14 51)(15 52)(16 25)(17 21)(18 22)(19 23)(20 24)(26 69)(27 70)(28 66)(29 67)(30 68)(36 46)(37 47)(38 48)(39 49)(40 50)(56 65)(57 61)(58 62)(59 63)(60 64)(71 80)(72 76)(73 77)(74 78)(75 79)(81 94)(82 95)(83 91)(84 92)(85 93)(86 110)(87 106)(88 107)(89 108)(90 109)(96 146)(97 147)(98 148)(99 149)(100 150)(101 128)(102 129)(103 130)(104 126)(105 127)(111 124)(112 125)(113 121)(114 122)(115 123)(116 133)(117 134)(118 135)(119 131)(120 132)(136 157)(137 158)(138 159)(139 160)(140 156)(141 154)(142 155)(143 151)(144 152)(145 153)
(1 66)(2 67)(3 68)(4 69)(5 70)(6 23)(7 24)(8 25)(9 21)(10 22)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 34)(18 35)(19 31)(20 32)(26 43)(27 44)(28 45)(29 41)(30 42)(46 53)(47 54)(48 55)(49 51)(50 52)(56 73)(57 74)(58 75)(59 71)(60 72)(61 78)(62 79)(63 80)(64 76)(65 77)(81 106)(82 107)(83 108)(84 109)(85 110)(86 93)(87 94)(88 95)(89 91)(90 92)(96 113)(97 114)(98 115)(99 111)(100 112)(101 118)(102 119)(103 120)(104 116)(105 117)(121 146)(122 147)(123 148)(124 149)(125 150)(126 133)(127 134)(128 135)(129 131)(130 132)(136 153)(137 154)(138 155)(139 151)(140 152)(141 158)(142 159)(143 160)(144 156)(145 157)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 144)(7 145)(8 141)(9 142)(10 143)(16 137)(17 138)(18 139)(19 140)(20 136)(21 159)(22 160)(23 156)(24 157)(25 158)(26 50)(27 46)(28 47)(29 48)(30 49)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 55)(42 51)(43 52)(44 53)(45 54)(56 94)(57 95)(58 91)(59 92)(60 93)(61 82)(62 83)(63 84)(64 85)(65 81)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 134)(97 135)(98 131)(99 132)(100 133)(101 122)(102 123)(103 124)(104 125)(105 121)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 56 45 81)(2 57 41 82)(3 58 42 83)(4 59 43 84)(5 60 44 85)(6 100 140 125)(7 96 136 121)(8 97 137 122)(9 98 138 123)(10 99 139 124)(11 93 53 64)(12 94 54 65)(13 95 55 61)(14 91 51 62)(15 92 52 63)(16 101 141 135)(17 102 142 131)(18 103 143 132)(19 104 144 133)(20 105 145 134)(21 115 155 148)(22 111 151 149)(23 112 152 150)(24 113 153 146)(25 114 154 147)(26 109 69 71)(27 110 70 72)(28 106 66 73)(29 107 67 74)(30 108 68 75)(31 116 156 126)(32 117 157 127)(33 118 158 128)(34 119 159 129)(35 120 160 130)(36 86 46 76)(37 87 47 77)(38 88 48 78)(39 89 49 79)(40 90 50 80)
(1 96 45 121)(2 97 41 122)(3 98 42 123)(4 99 43 124)(5 100 44 125)(6 85 140 60)(7 81 136 56)(8 82 137 57)(9 83 138 58)(10 84 139 59)(11 133 53 104)(12 134 54 105)(13 135 55 101)(14 131 51 102)(15 132 52 103)(16 95 141 61)(17 91 142 62)(18 92 143 63)(19 93 144 64)(20 94 145 65)(21 108 155 75)(22 109 151 71)(23 110 152 72)(24 106 153 73)(25 107 154 74)(26 149 69 111)(27 150 70 112)(28 146 66 113)(29 147 67 114)(30 148 68 115)(31 86 156 76)(32 87 157 77)(33 88 158 78)(34 89 159 79)(35 90 160 80)(36 126 46 116)(37 127 47 117)(38 128 48 118)(39 129 49 119)(40 130 50 120)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,45)(2,41)(3,42)(4,43)(5,44)(6,31)(7,32)(8,33)(9,34)(10,35)(11,53)(12,54)(13,55)(14,51)(15,52)(16,25)(17,21)(18,22)(19,23)(20,24)(26,69)(27,70)(28,66)(29,67)(30,68)(36,46)(37,47)(38,48)(39,49)(40,50)(56,65)(57,61)(58,62)(59,63)(60,64)(71,80)(72,76)(73,77)(74,78)(75,79)(81,94)(82,95)(83,91)(84,92)(85,93)(86,110)(87,106)(88,107)(89,108)(90,109)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,96,45,121)(2,97,41,122)(3,98,42,123)(4,99,43,124)(5,100,44,125)(6,85,140,60)(7,81,136,56)(8,82,137,57)(9,83,138,58)(10,84,139,59)(11,133,53,104)(12,134,54,105)(13,135,55,101)(14,131,51,102)(15,132,52,103)(16,95,141,61)(17,91,142,62)(18,92,143,63)(19,93,144,64)(20,94,145,65)(21,108,155,75)(22,109,151,71)(23,110,152,72)(24,106,153,73)(25,107,154,74)(26,149,69,111)(27,150,70,112)(28,146,66,113)(29,147,67,114)(30,148,68,115)(31,86,156,76)(32,87,157,77)(33,88,158,78)(34,89,159,79)(35,90,160,80)(36,126,46,116)(37,127,47,117)(38,128,48,118)(39,129,49,119)(40,130,50,120)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,45)(2,41)(3,42)(4,43)(5,44)(6,31)(7,32)(8,33)(9,34)(10,35)(11,53)(12,54)(13,55)(14,51)(15,52)(16,25)(17,21)(18,22)(19,23)(20,24)(26,69)(27,70)(28,66)(29,67)(30,68)(36,46)(37,47)(38,48)(39,49)(40,50)(56,65)(57,61)(58,62)(59,63)(60,64)(71,80)(72,76)(73,77)(74,78)(75,79)(81,94)(82,95)(83,91)(84,92)(85,93)(86,110)(87,106)(88,107)(89,108)(90,109)(96,146)(97,147)(98,148)(99,149)(100,150)(101,128)(102,129)(103,130)(104,126)(105,127)(111,124)(112,125)(113,121)(114,122)(115,123)(116,133)(117,134)(118,135)(119,131)(120,132)(136,157)(137,158)(138,159)(139,160)(140,156)(141,154)(142,155)(143,151)(144,152)(145,153), (1,66)(2,67)(3,68)(4,69)(5,70)(6,23)(7,24)(8,25)(9,21)(10,22)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,34)(18,35)(19,31)(20,32)(26,43)(27,44)(28,45)(29,41)(30,42)(46,53)(47,54)(48,55)(49,51)(50,52)(56,73)(57,74)(58,75)(59,71)(60,72)(61,78)(62,79)(63,80)(64,76)(65,77)(81,106)(82,107)(83,108)(84,109)(85,110)(86,93)(87,94)(88,95)(89,91)(90,92)(96,113)(97,114)(98,115)(99,111)(100,112)(101,118)(102,119)(103,120)(104,116)(105,117)(121,146)(122,147)(123,148)(124,149)(125,150)(126,133)(127,134)(128,135)(129,131)(130,132)(136,153)(137,154)(138,155)(139,151)(140,152)(141,158)(142,159)(143,160)(144,156)(145,157), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,56,45,81)(2,57,41,82)(3,58,42,83)(4,59,43,84)(5,60,44,85)(6,100,140,125)(7,96,136,121)(8,97,137,122)(9,98,138,123)(10,99,139,124)(11,93,53,64)(12,94,54,65)(13,95,55,61)(14,91,51,62)(15,92,52,63)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,115,155,148)(22,111,151,149)(23,112,152,150)(24,113,153,146)(25,114,154,147)(26,109,69,71)(27,110,70,72)(28,106,66,73)(29,107,67,74)(30,108,68,75)(31,116,156,126)(32,117,157,127)(33,118,158,128)(34,119,159,129)(35,120,160,130)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80), (1,96,45,121)(2,97,41,122)(3,98,42,123)(4,99,43,124)(5,100,44,125)(6,85,140,60)(7,81,136,56)(8,82,137,57)(9,83,138,58)(10,84,139,59)(11,133,53,104)(12,134,54,105)(13,135,55,101)(14,131,51,102)(15,132,52,103)(16,95,141,61)(17,91,142,62)(18,92,143,63)(19,93,144,64)(20,94,145,65)(21,108,155,75)(22,109,151,71)(23,110,152,72)(24,106,153,73)(25,107,154,74)(26,149,69,111)(27,150,70,112)(28,146,66,113)(29,147,67,114)(30,148,68,115)(31,86,156,76)(32,87,157,77)(33,88,158,78)(34,89,159,79)(35,90,160,80)(36,126,46,116)(37,127,47,117)(38,128,48,118)(39,129,49,119)(40,130,50,120) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,45),(2,41),(3,42),(4,43),(5,44),(6,31),(7,32),(8,33),(9,34),(10,35),(11,53),(12,54),(13,55),(14,51),(15,52),(16,25),(17,21),(18,22),(19,23),(20,24),(26,69),(27,70),(28,66),(29,67),(30,68),(36,46),(37,47),(38,48),(39,49),(40,50),(56,65),(57,61),(58,62),(59,63),(60,64),(71,80),(72,76),(73,77),(74,78),(75,79),(81,94),(82,95),(83,91),(84,92),(85,93),(86,110),(87,106),(88,107),(89,108),(90,109),(96,146),(97,147),(98,148),(99,149),(100,150),(101,128),(102,129),(103,130),(104,126),(105,127),(111,124),(112,125),(113,121),(114,122),(115,123),(116,133),(117,134),(118,135),(119,131),(120,132),(136,157),(137,158),(138,159),(139,160),(140,156),(141,154),(142,155),(143,151),(144,152),(145,153)], [(1,66),(2,67),(3,68),(4,69),(5,70),(6,23),(7,24),(8,25),(9,21),(10,22),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,34),(18,35),(19,31),(20,32),(26,43),(27,44),(28,45),(29,41),(30,42),(46,53),(47,54),(48,55),(49,51),(50,52),(56,73),(57,74),(58,75),(59,71),(60,72),(61,78),(62,79),(63,80),(64,76),(65,77),(81,106),(82,107),(83,108),(84,109),(85,110),(86,93),(87,94),(88,95),(89,91),(90,92),(96,113),(97,114),(98,115),(99,111),(100,112),(101,118),(102,119),(103,120),(104,116),(105,117),(121,146),(122,147),(123,148),(124,149),(125,150),(126,133),(127,134),(128,135),(129,131),(130,132),(136,153),(137,154),(138,155),(139,151),(140,152),(141,158),(142,159),(143,160),(144,156),(145,157)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,144),(7,145),(8,141),(9,142),(10,143),(16,137),(17,138),(18,139),(19,140),(20,136),(21,159),(22,160),(23,156),(24,157),(25,158),(26,50),(27,46),(28,47),(29,48),(30,49),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,55),(42,51),(43,52),(44,53),(45,54),(56,94),(57,95),(58,91),(59,92),(60,93),(61,82),(62,83),(63,84),(64,85),(65,81),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,134),(97,135),(98,131),(99,132),(100,133),(101,122),(102,123),(103,124),(104,125),(105,121),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,56,45,81),(2,57,41,82),(3,58,42,83),(4,59,43,84),(5,60,44,85),(6,100,140,125),(7,96,136,121),(8,97,137,122),(9,98,138,123),(10,99,139,124),(11,93,53,64),(12,94,54,65),(13,95,55,61),(14,91,51,62),(15,92,52,63),(16,101,141,135),(17,102,142,131),(18,103,143,132),(19,104,144,133),(20,105,145,134),(21,115,155,148),(22,111,151,149),(23,112,152,150),(24,113,153,146),(25,114,154,147),(26,109,69,71),(27,110,70,72),(28,106,66,73),(29,107,67,74),(30,108,68,75),(31,116,156,126),(32,117,157,127),(33,118,158,128),(34,119,159,129),(35,120,160,130),(36,86,46,76),(37,87,47,77),(38,88,48,78),(39,89,49,79),(40,90,50,80)], [(1,96,45,121),(2,97,41,122),(3,98,42,123),(4,99,43,124),(5,100,44,125),(6,85,140,60),(7,81,136,56),(8,82,137,57),(9,83,138,58),(10,84,139,59),(11,133,53,104),(12,134,54,105),(13,135,55,101),(14,131,51,102),(15,132,52,103),(16,95,141,61),(17,91,142,62),(18,92,143,63),(19,93,144,64),(20,94,145,65),(21,108,155,75),(22,109,151,71),(23,110,152,72),(24,106,153,73),(25,107,154,74),(26,149,69,111),(27,150,70,112),(28,146,66,113),(29,147,67,114),(30,148,68,115),(31,86,156,76),(32,87,157,77),(33,88,158,78),(34,89,159,79),(35,90,160,80),(36,126,46,116),(37,127,47,117),(38,128,48,118),(39,129,49,119),(40,130,50,120)]])
110 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4L | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 10AC | ··· | 10AJ | 20A | ··· | 20AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | Q8 | C4○D4 | C5×D4 | C5×Q8 | C5×C4○D4 |
kernel | C5×C23⋊Q8 | C5×C2.C42 | C10×C22⋊C4 | Q8×C2×C10 | C23⋊Q8 | C2.C42 | C2×C22⋊C4 | C22×Q8 | C2×C20 | C22×C10 | C2×C10 | C2×C4 | C23 | C22 |
# reps | 1 | 3 | 3 | 1 | 4 | 12 | 12 | 4 | 6 | 2 | 6 | 24 | 8 | 24 |
Matrix representation of C5×C23⋊Q8 ►in GL6(𝔽41)
10 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
40 | 32 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 9 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 28 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
2 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 39 | 0 | 0 |
0 | 0 | 40 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 9 | 0 | 0 | 0 | 0 |
18 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 1 |
0 | 0 | 0 | 0 | 10 | 14 |
G:=sub<GL(6,GF(41))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[40,0,0,0,0,0,32,1,0,0,0,0,0,0,1,9,0,0,0,0,0,40,0,0,0,0,0,0,1,28,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,2,0,0,0,0,0,9,0,0,0,0,0,0,9,40,0,0,0,0,39,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,18,0,0,0,0,9,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,27,10,0,0,0,0,1,14] >;
C5×C23⋊Q8 in GAP, Magma, Sage, TeX
C_5\times C_2^3\rtimes Q_8
% in TeX
G:=Group("C5xC2^3:Q8");
// GroupNames label
G:=SmallGroup(320,894);
// by ID
G=gap.SmallGroup(320,894);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,280,589,288,1766,1731]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations